The Mitochondrial Genome of the Glomeromycete Rhizophagus sp. DAOM 213198 Reveals an Unusual Organization Consisting of Two Circular Chromosomes

نویسندگان

  • Maryam Nadimi
  • Franck O.P. Stefani
  • Mohamed Hijri
چکیده

Mitochondrial (mt) genomes are intensively studied in Ascomycota and Basidiomycota, but they are poorly documented in basal fungal lineages. In this study, we sequenced the complete mtDNA of Rhizophagus sp. DAOM 213198, a close relative to Rhizophagus irregularis, a widespread, ecologically and economical relevant species belonging to Glomeromycota. Unlike all other known taxonomically close relatives harboring a full-length circular chromosome, mtDNA of Rhizophagus sp. reveals an unusual organization with two circular chromosomes of 61,964 and 29,078 bp. The large chromosome contained nine protein-coding genes (atp9, nad5, cob, nad4, nad1, nad4L, cox1, cox2, and atp8), small subunit rRNA gene (rns), and harbored 20 tRNA-coding genes and 10 orfs, while the small chromosome contained five protein-coding genes (atp6, nad2, nad3, nad6, and cox3), large subunit rRNA gene (rnl) in addition to 5 tRNA-coding genes, and 8 plasmid-related DNA polymerases (dpo). Although structural variation of plant mt genomes is well documented, this study is the first report of the presence of two circular mt genomes in arbuscular mycorrhizal fungi. Interestingly, the presence of dpo at the breakage point in intergenes cox1-cox2 and rnl-atp6 for large and small mtDNAs, respectively, could be responsible for the conversion of Rhizophagus sp. mtDNA into two chromosomes. Using quantitative real-time polymerase chain reaction, we found that both mtDNAs have an equal abundance. This study reports a novel mtDNA organization in Glomeromycota and highlights the importance of studying early divergent fungal lineages to describe novel evolutionary pathways in the fungal kingdom.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intraisolate Mitochondrial Genetic Polymorphism and Gene Variants Coexpression in Arbuscular Mycorrhizal Fungi

Arbuscular mycorrhizal fungi (AMF) are multinucleated and coenocytic organisms, in which the extent of the intraisolate nuclear genetic variation has been a source of debate. Conversely, their mitochondrial genomes (mtDNAs) have appeared to be homogeneous within isolates in all next generation sequencing (NGS)-based studies. Although several lines of evidence have challenged mtDNA homogeneity i...

متن کامل

Multiple Conserved Heteroplasmic Sites in tRNA Genes in the Mitochondrial Genomes of Terrestrial Isopods (Oniscidea)

Mitochondrial genome structure and organization are relatively conserved among metazoans. However, in many isopods, especially the terrestrial isopods (Oniscidea), the mitochondrial genome consists of both ∼14-kb linear monomers and ∼28-kb circular dimers. This unusual organization is associated with an ancient and conserved constitutive heteroplasmic site. This heteroplasmy affects the anticod...

متن کامل

Rapid Mitochondrial Genome Evolution through Invasion of Mobile Elements in Two Closely Related Species of Arbuscular Mycorrhizal Fungi

Arbuscular mycorrhizal fungi (AMF) are common and important plant symbionts. They have coenocytic hyphae and form multinucleated spores. The nuclear genome of AMF is polymorphic and its organization is not well understood, which makes the development of reliable molecular markers challenging. In stark contrast, their mitochondrial genome (mtDNA) is homogeneous. To assess the intra- and inter-sp...

متن کامل

Animal Mitochondrial DNA as We Do Not Know It: mt-Genome Organization and Evolution in Nonbilaterian Lineages

Animal mitochondrial DNA (mtDNA) is commonly described as a small, circular molecule that is conserved in size, gene content, and organization. Data collected in the last decade have challenged this view by revealing considerable diversity in animal mitochondrial genome organization. Much of this diversity has been found in nonbilaterian animals (phyla Cnidaria, Ctenophora, Placozoa, and Porife...

متن کامل

The Complete Mitochondrial Genome of the Booklouse, Liposcelis decolor: Insights into Gene Arrangement and Genome Organization within the Genus Liposcelis

Booklice in the genus Liposcelis are pests of stored grain products. They pose a considerable economic threat to global food security and safety. To date, the complete mitochondrial genome has only been determined for a single booklouse species Liposcelis bostrychophila. Unlike most bilateral animals, which have their 37 mt genes on one circular chromosome, ≈15 kb in size, the mt genome of L. b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014